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J. Luis Cagide Fajin,| Carlos Morell,# Reinaldo Molina Ruiz,⊥ ,§
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Up to now, very few applications of multiobjective optimization (MOOP) techniques to quantitative
structure-activity relationship (QSAR) studies have been reported in the literature. However, none of them
report the optimization of objectives related directly to the final pharmaceutical profile of a drug. In this
paper, a MOOP method based on Derringer’s desirability function that allows conducting global QSAR
studies, simultaneously considering the potency, bioavailability, and safety of a set of drug candidates, is
introduced. The results of the desirability-based MOOP (the levels of the predictor variables concurrently
producing the best possible compromise between the properties determining an optimal drug candidate) are
used for the implementation of a ranking method that is also based on the application of desirability functions.
This method allows ranking drug candidates with unknown pharmaceutical properties from combinatorial
libraries according to the degree of similarity with the previously determined optimal candidate. Application
of this method will make it possible to filter the most promising drug candidates of a library (the best-
ranked candidates), which should have the best pharmaceutical profile (the best compromise between potency,
safety and bioavailability). In addition, a validation method of the ranking process, as well as a quantitative
measure of the quality of a ranking, the ranking quality index (Ψ), is proposed. The usefulness of the
desirability-based methods of MOOP and ranking is demonstrated by its application to a library of 95
fluoroquinolones, reporting their gram-negative antibacterial activity and mammalian cell cytotoxicity. Finally,
the combined use of the desirability-based methods of MOOP and ranking proposed here seems to be a
valuable tool for rational drug discovery and development.

1. Introduction

Development of a successful drug is a complex and
lengthy process, and failure at the development stage is
caused by multiple factors, such as lack of efficacy, poor
bioavailability, and toxicity.1 Roughly 75% of the total costs
during the development of a drug is attributed to poor
pharmacokinetics or to toxicity.2 Improvement of the profile
of a candidate drug requires finding the best compromise
between various, often competing, objectives. In fact, the
ideal drug should have the highest therapeutic efficacy, the

highest bioavailability, and the lowest toxicity, which shows
the multiobjective nature of the drug discovery and develop-
ment process. But even when a potent candidate has been
identified, the pharmaceutical industry routinely tries to
optimize the remaining objectives one at a time, which often
results in expensive and time-consuming cycles of trial and
error.3

In recent years, the drug discovery/development process
has been gaining in efficiency and rationality because of the
continuous progress and application of chemoinformatics
methods.3 In particular, the quantitative structure-activity
relationship (QSAR) paradigm has long been of interest in
the drug-design process,4 redirecting our thinking about
structuring medicinal chemistry.5

At the same time, the virtual screening (VS)6,7 of com-
binatorial libraries has emerged as an adaptive response to
the massive throughput synthesis and screening paradigm.
In parallel to the development of methods that provide (more)
accurate predictions for pharmacological, pharmacokinetic,
and toxicological properties for low-number series of com-
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pounds (tens, hundreds), necessity has forced the computa-
tional chemistry community to develop tools that screen
against any given target or property, millions or perhaps
billions of molecules, virtual or not.8 VS technologies have
thus emerged as a response to the pressure from the
combinatorial/high-throughput screening (HTS) community.

Yet standard chemoinformatics approaches usually ignore
multiple objectives and optimize each biological property
sequentially.9-20 Nevertheless, some efforts have been made
recently toward unified approaches capable of modeling
multiple pharmacological, pharmacokinetic, or toxicological
properties onto a single QSAR equation.21-25

Multiobjective optimization (MOOP) methods introduce
a new philosophy to obtain optimality on the basis of
compromises among the various objectives. These methods
aim at hitting the global optimal solution by optimization of
several dependent properties simultaneously. The major
benefit of MOOP methods is that local optima, corresponding
to one objective can be avoided by taking into account the
whole spectra of objectives, thus leading to a more efficient
overall process.26

Several applications of MOOP methods in the field of drug
development have appeared lately, ranging from substructure
mining to docking, including inverse quantitative structure
property relationship (QSPR) and QSAR.26 Most of these
MOOP applications have been based on the following
approaches: weighted-sum-of-objective-functions (WSOF)27

and pareto-based methods.26 An excellent review on the
subject has been recently published by Nicolaou et al.26

Despite the availability of numerous optimization objec-
tives, MOOP techniques have only recently been applied to
the building of QSAR models. Actually, very few reports
exist of the application of MOOP methods to QSAR,28-30

and no one reports the simultaneous optimization of compet-
ing objectives directly related with the definitive pharma-
ceutical profile of drugs, such as therapeutic efficacy,
bioavailability, and toxicity.

At the same time, ranking of cases is an increasingly
important way to describe the result of many data mining
and other science and engineering applications.31 Specifically,
in rational drug development, the availability of accurate
ranking methods is highly desirable for VS and filtering of
promising new drug candidates from combinatorial libraries.2

In the present work, we are proposing a MOOP method
based on Derringer’s desirability function32 that allows global
QSAR studies to be run jointly, considering multiple
properties of interest to the drug-design process.33 The results
of the desirability-based MOOP will be used for the
implementation of a ranking method also based on the
application of desirability functions. In addition, a validation
method of the ranking process, as well as a quantitative
measure of the quality of a ranking, is proposed. Finally,
the usefulness of the desirability-based methods of MOOP
and ranking is demonstrated by its application to a library
of 95 fluoroquinolones, reporting their gram-negative anti-
bacterial activity and mammalian cell cytotoxicity.

2. Materials and Methods

2.1. Data Set. Our prediction models (PMs), as well as
the desirability-based MOOP, were performed using a library
of 117 fluoroquinolones published by Suto et al.34

The cytotoxicity on Chinese hamster V79 cells expressed
as the IC50 (µg/mL) and defined as the concentration of
compound yielding 50% cell survival compared to untreated
control cells. The IC50 on Chinese hamster V79 cells is used
by Suto et al. as a genetic toxicity end point.34,35 Gracheck
et al.35 demonstrated that mammalian cell cytotoxicity in
Chinese hamster V79 cells was predictive of the in vitro
genetic toxicity for the fluoroquinolone class of compounds.
In this study, a small group of compounds was evaluated in
vitro for their ability to inhibit eukaryotic topoisomerase II
activity, their cytotoxicity toward mammalian cells, and their
induction of micronuclei, a genetic toxicity end point.36-40

A strong correlation was seen between the induction of
micronuclei in vitro and mammalian cell cytotoxicity (R2 )
0.94).

The compounds were evaluated against five Gram-negative
organisms using standard microdilution technique.41 The data
presented represent the geometric mean of the MIC’s (µg/
mL) for the Gram-negative (Enterobacter cloacae MA 2646,
Escherichia coli Vogel, Klebsiella pneumonia MGH-2,
ProVidencia rettgeri M 1771, and Pseudomonas aeruginosa)
bacteria.34

Twenty-two out of the 117 compounds reported in ref34
were removed from the data because these values were
inaccurately reported (less than, greater than, or greater than
or equal to values were reported). The use of inaccurate
values reduces significantly the goodness of fit of a multiple
linear regression (MLR) model. On the other hand, the values
of IC50 and MIC of the 95 compounds used as training were
transformed (1/1+ IC50 or MIC) to obtain the best fit with
the predictive variables. The chemical structure and the
values of IC50 and MIC of the 117 fluoroquinolones are
shown in the Supporting Information (see Table SI1).

2.2. Computational Methods. The structures of all
compounds were first drawn with the aid of ChemDraw
software package,42 and reasonable starting geometries were
obtained by resorting to the MM2 molecular mechanics force
field.43,44 Molecular structures were then fully optimized with
the PM3 semiempirical Hamiltonian,42 implemented in the
MOPAC 6.0 program.45 Here, it should be remarked that
the final molecular structures pertain only to the compounds’
global minimum energy conformations, and indeed, further
molecular simulations or docking studies would be desirable
to reach reliable conclusions about conformational require-
ments and ligand-receptor interactions. But the point of any
QSAR model is to have a set of readily calculated descriptors,
and such an approach would require much more extensive
calculations.

Subsequently, the optimized structures were brought into
the DRAGON software package46 for computation of a total
of 1481 molecular descriptors.47 As part of the necessary
variable reduction, descriptors having constant or near-
constant values, as well as highly pair-correlated (|R| > 0.95)
values, were excluded. Table 1 summarizes the DRAGON
molecular descriptors used in this work.
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The task of selecting the descriptors that will be more
suitable to model the activity of interest is complicated
because there are no absolute criteria for such selection.
Herein, an optimization technique, the genetic algorithm
(GA), was applied for variable selection48-51 by using the
BuildQSAR software package.52,53 GA evolves a group of
random initial models with fitness scores and searches for
chromosomes with better fitness functions through natural
selection and Darwinian evolution (mutation and crossover).
Table 2 depicts the DRAGON molecular descriptors selected
by the GA method, which were finally applied to model the
antibacterial and cytotoxic properties of the flouroquinolones
library used in this study.

For the modeling technique, we opted for a regression-
based approach; in this case, the regression coefficients and
statistical parameters were obtained by multiple linear
regression (MLR) analysis by means of the STATISTICA
software package.54 For each PM, the goodness of fit was
assessed by examining the determination coefficient (R2),
the adjusted determination coefficient (Adj.R2), the standard
deviation (s), Fisher’s statistics (F), as well as the ratio
between the number of compounds (N), and the number of
adjustable parameters (p′) in the model, known as the F
statistics. The stability and predictive ability of the models
was approached by means of internal cross-validation (CV),
specifically by the leave-one-out (LOO) technique.55 Basi-
cally, LOO consists of forming N subsets from the entire
data set, each missing one point, which in turn is used to
validate a new model that is trained with the corresponding
subset. The quality of the new models (cross validation R2/
QLOO

2) gives an estimated measure of the predictive ability
of the full model.

We have also checked the validity of the preadopted
parametric assumptions, another important aspect in the
application of linear multivariate statistical-based ap-
proaches.56 These include the linearity of the modeled
property and the homoscedasticity (or homogeneity of
variance), as well as the normal distribution of the residuals
and nonmulticollinearity between the descriptors.57

Finally, the applicability domain of the final PMs was
identified by a leverage plot, that is, a plot of the standardized
residuals versus leverages for each training compound.55,58

The leverage (hi) of a compound in the original variable space
measures its influence on the model and is calculated as

hi ) ti(T
TT)-1ti

T (1)

where ti is the descriptor vector of that compound and T is
the model matrix derived from the training set descriptor
values. In addition, the warning leverage h* is defined as

h*) 3 × p′ ⁄ N (2)

Leverage values can be calculated for both training
compounds and new compounds. A leverage higher than the
warning leverage h* means that the compound predicted
response can be extrapolated from the model, and thus, the
predicted value must be used with great care. On the other
hand, a standardized residual value greater than two indicates
that the value of the dependent variable for the compound
is significantly separated from the remainder training data,
and hence, such predictions must be considered with much
caution too. In this work, only predicted data for new
compounds belonging to the applicability domain of the
training set can be considered reliable.

2.3. Desirability Functions Specifications. In the present
work, the optimization of the overall desirability was carried
on by the “Use general function optimization” option62–64

of the general regression module of STATISTICA.54 This
process was carried out on a Windows platform in ap-
proximately 16 h. Two desirability functions, one for each
response, were fitted. Specifically, the cytotoxicity over
mammalian cells ought to be minimized (eq 6). This property
is expressed here through the IC50 value. According to the
meaning, this value should be maximized in such a way that
the compound with the highest IC50 value should be the most
desirable (di ) 1). Because of the transformation applied
(1/1+IC50), this value actually have to be minimized (the
same for the antibacterial activity). For estimation of di, the
lower value Li ) Ti was set to 1/1+IC50 ) 0.002 ) (IC50 )
380 µg/mL), coinciding with the least cytotoxic compound
used for training, and the upper value Ui was set to 0.1/8
µg/mL (the most cytotoxic compound). In contrast, the
antibacterial activity against gram-negative microorganisms
must be maximized where Li ) (1/1+MIC ) 0.038) ) (MIC
) 25 µg/mL) and Ui ) Ti ) (1/1+MIC ) 0.99/MIC ) 0.01
µg/mL) (eq 5). Furthermore, the spline method59,60 was used
for fitting the desirability function, and the current level of
each independent variable was set equal to its optimal value.
As to the s and t parameters, these were fixed at 1.00 by
assuming that the desirability functions increase linearly
toward Ti on the two responses.

2.4. Multiobjective Optimization Based on the Desir-
ability Estimation of Several Interrelated Responses.
Improvement of the profile of a molecule for the drug
discovery and development process requires the simultaneous
optimization of several different objectives. The ideal drug
should have the highest therapeutic efficacy and bioavail-
ability, as well as the lowest toxicity. Because of the
conflicting relationship among the aforementioned properties,
such a drug is almost unattainable, and if possible, it is an
extremely difficult, expensive, and time-consuming task.

Table 1. DRAGON Molecular Descriptors

0D descriptors 1D descriptors

class no. class no.

constitutional descriptors 47 functional groups 121
atom-centered fragments 120
empirical descriptors 3
properties 3

2D descriptors 3D descriptors

class no. class no.

topological descriptors 262 charge descriptors 14
molecular walk counts 21 aromaticity indices 4
BCUT descriptors 64 Randic molecular profiles 41
Galvez topological charge indices 21 geometrical descriptors 58
2D autocorrelations 96 RDF descriptors 150

3D-MoRSE descriptors 160
WHIM descriptors 99
GETAWAY descriptors 197
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However, finding the best compromise between such objec-
tives is an accessible and more realistic target (see Figure
1).

In this work, we are proposing a multiobjective optimiza-
tion technique based on the desirability estimation of several
interrelated responses (MOOP-DESIRE) as a tool to perform
global QSAR studies, considering simultaneously the phar-
macological, pharmacokinetic, and toxicological profiles of
a set of drug candidates. The MOOP-DESIRE methodology
is intended to find the most desirable solution that optimizes
a multiobjective problem by using the Derringer’s desirability
function,32 specifically addressed to confer rationality to the
drug development process. The MOOP method introduced
in this work is based on the compromise of potency, safety,
and bioavailability. Because other parameters would be also
comprised in their future application, the current MOOP is
named to identify the possible content. Therefore, this
specific application is named MOOP-DESIRE(PHARM-TOX) in
allusion to the pharmaceutical and toxicological properties
simultaneously optimized.

The process of simultaneous optimization of multiple
properties of a drug candidate can be described as follows.

From now on, the terms “response variable” and “indepen-
dent variables” should be understood as any property to be
optimized and any set of molecular descriptors used to model
each property, respectively.

2.4.1. Prediction Model Setup. Each response variable
(Yi) is related to the n independent variables (Xn) by an
unknown functional relationship, often (but not necessarily)
approximated by a linear function. Each predicted response
(Yi) is then estimated by a least-squares regression technique.

In some cases, the developed prediction model for some
responses may share the same independent variables of other
responses’ prediction models but with different coefficients.
In this atypical case, attaining the best compromise among
the responses turns out to be simpler. Actually, because of
the multiplicity of factors involved in the “drugability” of a
molecule, one should not expect that the same subset of
independent variables can optimally explain both different
types of biological properties (especially conflicting proper-
ties like potency and toxicity). However, in the latter case,
there is still a way to maximize the desirability of both
biological properties, that is, to setup a global prediction
model where the predicted values of each response are fitted
to a linear function using the whole subset of independent
variables employed in modeling the k original responses.
Here, the independent variables used in computing the
predicted values for the original responses will remain the
same. Independent variables not used in computing the
predicted values for the original responses will be set to zero.

2.4.2. Desirability Function Selection and Evaluation.
For each predicted response Yi, a desirability function di

assigns values between 0 and 1 to the possible values of Yi.
This transformed response di, can have many different
shapes. Regardless of the shape, di ) 0 represents a
completely undesirable value of Yi, and di ) 1 represents a
completely desirable or ideal response value. The individual
desirabilities are then combined using the geometric mean,
which gives the overall desirability D

Table 2. DRAGON Molecular Descriptors Selected by the GA Method That Were Used on the Desirability-Based MOOP Process

symbol definition class type property

MATS3e Moran autocorrelation lag 3/weighted by atomic Sanderson electronegativities 2D autocorrelations 2D IC50

GATS5p Geary autocorrelation lag 5/weighted by atomic polarizabilities 2D autocorrelations 2D IC50

JGI6 Mean topological charge index of order 6 Galvez topological charge indices 2D IC50

D/Dr06 distance/detour ring index of order 6 topological descriptors 2D MIC
BELp1 lowest eigenvalue n. One of Burden matrix/weighted by atomic polarizabilities BCUT descriptors 2D MIC
H4m H autocorrelation of lag 4/weighted by atomic masses GETAWAY descriptors 3D IC50 and MIC
HATS3m Leverage-weighted autocorrelation of lag 3/weighted by atomic masses GETAWAY descriptors 3D MIC
HATS3e Leverage-weighted autocorrelation of lag 3/weighted by atomic Sanderson

electronegativities
GETAWAY descriptors 3D MIC

H6v H autocorrelation of lag 6/weighted by atomic van der Waals volumes GETAWAY descriptors 3D IC50

R4e+ R maximal autocorrelation of lag 4/weighted by atomic Sanderson
electronegativities

GETAWAY descriptors 3D IC50

R5p R autocorrelation of lag 5/weighted by atomic polarizabilities GETAWAY descriptors 3D IC50

Mor24v 3D-MoRSE signal 24/weighted by atomic van der Waals volumes 3D-MoRSE descriptors 3D IC50

Mor05m 3D-MoRSE signal 05/weighted by atomic masses 3D-MoRSE descriptors 3D MIC
Mor14v 3D-MoRSE signal 14/weighted by atomic van der Waals volumes 3D-MoRSE descriptors 3D MIC
RDF020e radial distribution function 2.0 /weighted by atomic Sanderson

electronegativities
RDF descriptors 3D MIC

RDF050e radial distribution function 5.0/weighted by atomic Sanderson
electronegativities

RDF descriptors 3D MIC

FDI folding degree index geometrical descriptors 3D IC50

G(F · · · F) sum of geometrical distances between F · · · F geometrical descriptors 3D IC50 and MIC

Figure 1. Graphic representation of the compromise between
therapeutic efficacy (potency), bioavailability (ADME properties),
and toxicity (safety) required to reach a successful drug.
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D) (d1 × d2 × ... × dk)
1

k (3)

with k denoting the number of responses.
This single value of D gives the overall assessment of the

desirability of the combined response levels. Clearly, the
range of D will fall in the interval [0, l] and will increase as
the balance of the properties becomes more favorable. Notice
that if for any response di ) 0, then the overall desirability
is zero. Thus, the desirability maximum will be at the levels
of the independent variables that simultaneously produce the
maximum desirability, given the original models used for
predicting each original response.

Depending on whether a particular response is to be
maximized, minimized, or assigned a target value, different
desirability functions can be used. Here, we used the
desirability functions proposed by Derringer and Suich.32

Let Li, Ui, and Ti be the lower, upper, and target values,
respectively, that are desired for the response Yi, with Li e
Ti e Ui.

If a response is of the target best kind, then its individual
desirability function is defined as

di ) { [ Ŷi - Li

Ti - Li
]s

if Lie Ŷie Ti

[ Ŷi -Ui

Ti -Ui
] t

if Ti < ŶieUi

0 if Ŷi < Li or Ŷi > Ui

(4)

If a response is to be maximized instead, its individual
desirability function is defined as

di ) { 0 if Ŷie Li

[ Ŷi - Li

Ti - Li
]s

if Li < Ŷi < Ti

1 if Ŷig Ti )Ui

(5)

In this case, Ti is interpreted as a large enough value for the
response, which can be Ui.

Finally, if one wants to minimize a response, one might
use

di ) { 1 if Ŷie Ti ) Li

[ Ŷi -Ui

Ti -Ui
]s

if Ui < Ŷi < Ti

0 if ŶigUi

(6)

Here, Ti denotes a small enough value for the response,
which can be Li. Moreover, the exponents s and t determine
how important is to hit the target value Ti. For s ) t ) 1,
the desirability function increases linearly toward Ti. Large
values for s and t should be selected if it is very desirable
that the value of Yi be close to Ti or increase rapidly above
Li. On the other hand, small values of s and t should be
chosen if almost any value of Yi above Li and below Ui are
acceptable or if having values of Yi considerably above Li

are not of critical importance.32

In this way, one may predict the overall desirability for
each drug candidate determined by k responses, which in
turn are at the same time determined by a specific set of

independent variables. However, as the Derringer’s desir-
ability function is built using the estimated responses Yi, there
is no way to know how reliable the predicted D value of
each candidate is.

To overcome this shortcoming, we propose a statistical
parameter, the oVerall desirability’s determination coefficient
(RD

2), which measures the effect of the set of independent
variables Xn in reduction of the uncertainty when predicting
the D values.

If the response variable is estimated as a continuous
function of the independent variables Xn, the individual
desirabilities di, are continuous functions of the estimated Yi

values (eqs 4-6), and the overall desirability D is a
continuous function of the di values s (eq. 3), then D is also
a continuous function of the Xn. Therefore, RD

2 can be
computed in analogy with the so-called determination
coefficient R2. Specifically, RD

2 is computed by using the
observed DYi (calculated from Yi) and the predicted DYi

(calculated from Yi) overall desirability values instead of
using directly the measured (Yi) and predicted (Yi) response
values.

RD
2 ) 1- SSE

SSTO
) 1-

∑ (DYi
-DŶi

)2

∑ (DYi
-Dj Yi

)2
(7)

where DYi and DYi have been defined previously Dj Yi is the
mean value of D for the Yi responses of each case included
in the data set, SSTO is the total sum of squares, and SSE
is the sum of squares due to error.

Similar to R2, the adjusted oVerall desirability’s determi-
nation coefficient (Adj.RD

2) can be computed as shown below.

Adj.RD
2 ) 1- SSE

SSTO
) 1-

∑ (DYi
-DŶi

)2

N- 2

∑ (DYi
-Dj Yi

)2

N- 1

(8)

Like this, both RD
2 and Adj.RD

2 have the same properties
of R2 and Adj.R2. Thus, both will fall in the range [0, 1],
and the larger RD

2 /Adj.RD
2 is, the lower is the uncertainty

in predicting D by using a specific set of independent
variables Xn.61

Since RD
2 and Adj.RD

2 measure the goodness of fit rather
than the predictive ability of a certain PM, it is advisable to
use an analogue of the leave one out cross-validation
determination coefficient (QLOO

2) to establish the reliability
of the method in predicting D. For this, the oVerall
desirability’s LOO-CV determination coefficient (QD

2) can
be defined in a manner analogous to that of RD

2

QD
2 ) 1-

SSELOO-CV

SSTO
) 1-

∑ (DYi
-DŶi

(LOO-CV))2

∑ (DYi
-Dj Yi

)2

(9)

where SSELOO-CV and DYi(LOO-CV) are the leave one out
cross validation square sum of residuals and the predicted
overall desirability by LOO-CV, respectively.
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In this way, we can have a measure of how reliable will
be the simultaneous optimization of the k responses over the
independent variables domain.

2.4.3. Multiobjective Optimization. As seen before, the
desirability function condenses a multivariate optimization
problem into a univariate one. Thus, the overall desirability
D can be maximized over the independent variables domain.
To accomplish this, one can use the “Response/Desirability
Profiler” option of any of the modules of regression or
discriminant analysis implemented in STATISTICA.54 The
overall desirability D is optimized with the “Use general
function optimization” option, which is, the simplex method
of function optimization,62-64 or the “Optimum desirability
at exact grid points” option, which performs exhaustive
searches for the optimum desirability at exact grid points.
The first option is usually faster, but the default option is
the later one, except when the number of predicted values
that must be computed to perform the exhaustive grid search
exceeds 200 000, in which case the “Use general function
optimization” option becomes the default.

The final result is to find the optimal levels (or an optimal
range) of the independent variables that optimize simulta-
neously the k responses determining the final quality of the
product. In this way, the best possible compromise between
the k responses is found, and consequently, the highest
overall desirability for the final compound is reached (i.e.,
the more enviable drug candidate).

2.5. Desirability-Based Ranking Algorithm. Case-based
reasoning (CBR) is mainly based on the assumption that
problems (cases; compounds in this work) with similar
descriptions (features; molecular descriptors determining the
chemical structure in this work) should have similar solutions
(the goal of the study; the biological properties involved in
the final pharmaceutical profile of the drug candidate in this
work).65 Consequently, by adaptation of previously success-
ful solutions to similar problems, it is possible (at least
theoretically) to find the solution of a case only based on its
description (that is, to infer the properties of a compound
based on their chemical structure from a previous knowledge
of the properties of a compound structurally similar).

On the basis of this reasoning paradigm, we are proposing
a ranking algorithm based on quantitative parameters esti-
mated from the description of the cases. Specifically, by the
application of this algorithm, it will be possible to rank drug
candidates (included on the model’s applicability domains)
with unknown pharmaceutical profiles (like those coming from
combinatorial libraries) according to their similarity with the
optimal drug candidate determined by the simultaneous mul-
tiobjective optimization process previously described.

∆i is the parameter used here to describe the similarity
between a case i and the optimal case as a function of the
subset of descriptive variables used for the multiobjective
optimization process, which is defined as

∆i ) ∑
X)1

m

δi,X ·wX (10)

where δi,X is the Euclidean distance between the case i and
the optimal case, considering the parameters X, and wX

represents the weight or influence of the variable X over the
global desirability D of the case i.

The Euclidean distance of a case i to a case j considering
several features or variables is defined as

E) [∑ (Xi -Xj)
2]1⁄2

(11)

Here, we decided to determine the degree of similarity
between a case i and the optimal case by considering one
by one every single variable X instead of considering
simultaneously all the X variables describing a case. By doing
this, it is possible to confer a higher degree of freedom to
the process of finding the optimal set of weighs associated
to the respective variables X. At the same time, this process
allows us to infer the relative influence of every variable X
over the global desirability D of a case i.

In a case like this one, where only one feature or variable is
considered at a time, the Euclidean distance between two cases
coincide with the absolute value of the difference between their
respective levels of that feature. Thus, δi,X is defined as

δi,X ) |Xi -XOPT| (12)

where Xi and XOPT are the values of the parameter X for the
case i and the optimal case, respectively.

The ∆i values are normalized by means of the application
of the Derringer desirability functions32 to bring them to the
same scale as Di. In this manner, it is possible to minimize
the difference between the values of ∆i and Di for every
case. Specifically, the respective values of ∆i are minimized
by means of eq 6 in such a way that the lower values
(indicative of a higher similarity with respect to the optimal
case) will take the values more close to 1 and vice versa.
Here, Li correspond to the lowest value of ∆i (∆iMIN) and Ui

) ∆iMAX.
Next, the optimal set of weighs wX minimizing the

difference between the values of Di and the normalized
values of ∆i for every case is found by a least-squares
nonlinear data-fitting process. The weights were obtained
through a nonlinear curve-fitting using the large-scale
optimization algorithm,66,67 implemented in the “lsqcurvefit”
function of MATLAB program, version 7.2.68 This process
was carried out over a windows platform at a very low
computational cost. A copy of the function employed is
available in the Supporting Information.

After we minimized the differences between Di and the
normalized values of ∆i, we achieved the highest possible
degree of concordance between the description (expressed
through the normalized values of ∆i which encode the
information related to the molecular structure expressed as
a function of the molecular descriptors employed) and the
solution of the cases (determined by the respective values
of Di, which represents the combination of the k properties
involved on the final quality of the drug candidate). Thus,
according to the CBR paradigm, it will be possible to rank,
according to ∆i, new and pharmaceutically unknown drug

Table 3. Example of Ordered Lists

OT 1 2 3 4 5 6 7 8 9 10

OR a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

3 6 2 4 5 8 1 7 10 9

OW 10 9 8 7 6 5 4 3 2 1
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candidates for which just their molecular structure is known
(like those coming from combinatorial libraries). In this way,
it will be possible to filter and identify the most promising
drug candidates, which will logically be placed first on the
order list (the candidates with the lowest values of ∆i and
consequently the most similar ones with the optimal drug
candidate determined by the desirability-based MOOP
process) and to discard the candidates ordered last.

2.6. Ranking Algorithm Validation and Estimation of
the Ranking Quality Index (Ψ). Even though the CBR
suggests that the nonlinear data-fitting process employed to
find the optimal set of weighs can lead to an adequate ranking
of the cases, it is not possible to know the quality of the

ranking achieved through this process. Considering the
above-mentioned, we are proposing a method for the
validation of the ranking obtained by the use of the optimal
set of weighs. In addition, we propose a quantitative criterion
of the quality of a ranking. Specifically, in this work we use
the same data set used for the desirability-based MOOP
process.

We will use some simple notations to represent ordering
throughout this paper. Without loss of generality, for n cases
to be ordered, we use the actual ordering position of each
case as the label to represent this case in the ordered list.
For example, suppose that the label of the actual highest
ranked case is n, the label of the actual second highest ranked
case is n - 1, etc. We assume the examples are ordered
incrementally from left to right. Then the true-order list is
OT ) 1, 2, 3, ..., n. For any ordered list generated by a
ranking algorithm, it is a permutation of OT. We use OR to
denote the ordered list generated by the ranking algorithm
R. OR can be written as a1, a2, ..., aI, where ai is the actual
ordering position of the case that is ranked ith in OR (see
Table 3).

The ranking validation includes the following steps:
1. Order the cases in the library according to D in a
decreasing fashion (starting with the case exhibiting the
highest value of D) and label each case as described above
((1, 2, 3, ..., n). This ordering corresponds to the true-order
list (OT).
2. Invert OT. This new ordering corresponds to the worst-
order list (OW).
3. Order incrementally the cases in the library according to
∆i (starting with the case exhibiting the lowest value of ∆i)
and label each case as described above (a1, a2, ..., an). This

Figure 2. Worst (top) and perfect (bottom) ranking.

Table 4. Regression Coefficients and Statistical Parameters for
the MLR Models

antibacterial activity MLR model (MIC ) 1/(1 + MIC))

1/1 + MIC ) 27.127((3.925) - 1.573((0.170) · H4M -
13.504((1.969) · BELp1 +0.071((0.012) · RDF020e -
0.130((0.024) · Mor05m - 0.006((0.001) · G(F · · · F)
+5.670((1.097) · HATS3m + 0.002((0.000) · D/Dr06 -
0.234((0.064) · Mor14v +1.449((0.423) · HATS3e +
0.011((0.003) · RDF050e

N R R2 Adj.R2 S Q2 SPRESS F F p

95 0.883 0.779 0.753 0.096 0.725 0.107 8.636 29.601 0.0000

cytotoxicity MLR model (IC50) 1/(1 + IC50)

1/1 + IC50 ) -0.966((0.146) + 0.611((0.053) · R5p -
0.135((0.012) · GATS5p -0.147((0.018) · H4m + 1.239((0.156) ·
FDI + 0.002((0.000) · G(F · · · F) + 0.114((0.019) · Mor24v -
0.162((0.039) · H6v + 0.183((0.045) · MATS3e -
0.329((0.086) · R4e+ - 1.152((0.397) · JGI6

N R R2 Adj.R2 S Q2 SPRESS F F p

95 0.867 0.750 0.721 0.014 0.686 0.016 8.636 25.313 0.0002
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Table 5. Observed and Predicted Values of the Optimized Properties and Their Respective Individual and Overall Desirability Values
for the Compounds Used on the Desirability-Based MOOP Process

compound ID 1/1 + MIC
predicted

1/1 + MIC d(MIC)
predicted
d(MIC) 1/1 + IC50

predicted
1/1 + IC50 d(IC50)

predicted
d(IC50) DMIC-IC50

predicted
DMIC-IC50

004-4-ciprofloxacin 0.909 0.908 0.915 0.914 0.003 -0.010 0.994 1.000 0.954 0.956
006-6-tosufloxacin 0.917 0.931 0.924 0.938 0.008 -0.006 0.941 1.000 0.932 0.968
007-7-PD117558 0.917 0.693 0.924 0.688 0.083 0.052 0.170 0.489 0.396 0.580
008-8 0.833 0.607 0.835 0.598 0.006 0.017 0.957 0.848 0.894 0.712
010-10 0.355 0.281 0.333 0.255 0.017 0.021 0.847 0.801 0.531 0.452
012-13 0.193 0.555 0.163 0.543 0.004 -0.002 0.978 1.000 0.400 0.737
014-15 0.641 0.576 0.633 0.565 0.003 -0.011 0.988 1.000 0.791 0.751
015-16 0.685 0.764 0.680 0.763 0.006 0.020 0.957 0.814 0.806 0.788
016-17 0.556 0.644 0.544 0.636 0.005 0.007 0.967 0.945 0.725 0.776
018-19 0.893 0.891 0.898 0.896 0.003 0.003 0.987 0.993 0.941 0.943
019-20 0.885 0.947 0.890 0.955 0.003 0.006 0.988 0.962 0.937 0.959
020-21 0.962 0.891 0.970 0.896 0.032 0.031 0.691 0.701 0.819 0.793
021-22 0.769 0.872 0.768 0.876 0.006 0.009 0.957 0.926 0.857 0.901
022-23A 0.833 0.807 0.835 0.808 0.026 0.021 0.759 0.805 0.796 0.806
023-23B 0.909 0.795 0.915 0.796 0.008 0.026 0.936 0.759 0.925 0.777
024-23C 0.909 0.936 0.915 0.944 0.007 0.015 0.953 0.865 0.934 0.904
025-23D 0.769 0.780 0.768 0.780 0.007 0.027 0.953 0.743 0.855 0.761
026-23E 0.074 0.304 0.038 0.279 0.004 -0.007 0.984 1.000 0.193 0.529
027-23F 0.794 0.905 0.794 0.911 0.017 0.021 0.847 0.805 0.820 0.856
028-24A 0.917 0.973 0.924 0.982 0.014 0.014 0.881 0.882 0.902 0.930
029-24C 0.971 0.865 0.980 0.869 0.037 0.013 0.642 0.889 0.793 0.879
030-24D 0.935 0.893 0.942 0.898 0.022 0.015 0.799 0.866 0.867 0.882
031-24E 0.833 0.683 0.835 0.677 0.003 0.001 0.987 1.000 0.908 0.823
032-24F 0.971 0.944 0.980 0.951 0.010 0.017 0.917 0.844 0.948 0.896
033-25A 0.833 0.827 0.835 0.829 0.012 0.026 0.896 0.753 0.865 0.790
034-25B 0.952 1.016 0.960 1.000 0.083 0.075 0.170 0.258 0.404 0.508
036-25D 0.901 0.879 0.906 0.884 0.091 0.045 0.093 0.558 0.290 0.702
037-25E 0.658 0.618 0.651 0.609 0.026 0.021 0.759 0.802 0.703 0.699
038-25F 0.877 0.848 0.882 0.851 0.019 0.041 0.824 0.598 0.852 0.713
040-26D 0.794 0.745 0.794 0.743 0.043 0.028 0.577 0.731 0.677 0.737
041-26E 0.625 0.600 0.617 0.590 0.008 0.005 0.936 0.969 0.760 0.756
042-26F 0.826 0.795 0.828 0.796 0.006 0.019 0.957 0.828 0.890 0.811
043-27A 0.658 0.773 0.651 0.772 0.042 0.037 0.595 0.647 0.623 0.707
044-27B 0.885 0.843 0.890 0.845 0.111 0.112 0.000 0.000 0.000 0.000
045-27C 0.935 0.989 0.942 0.999 0.111 0.088 0.000 0.122 0.000 0.349
046-27D 0.794 0.855 0.794 0.858 0.026 0.052 0.759 0.487 0.776 0.647
047-27E 0.500 0.598 0.485 0.588 0.009 0.026 0.928 0.756 0.671 0.667
048-27F 0.741 0.717 0.738 0.714 0.038 0.036 0.628 0.658 0.681 0.685
049-28A 0.714 0.687 0.710 0.681 0.005 0.018 0.971 0.832 0.830 0.753
050-28B 0.813 0.823 0.814 0.824 0.111 0.085 0.000 0.156 0.000 0.359
051-28C 0.794 0.659 0.794 0.652 0.042 0.064 0.595 0.367 0.687 0.489
052-28D 0.658 0.729 0.651 0.726 0.008 0.032 0.936 0.689 0.781 0.707
054-28F 0.625 0.702 0.617 0.698 0.017 0.013 0.847 0.891 0.723 0.789
055-29B 0.935 1.009 0.942 1.000 0.021 0.032 0.808 0.698 0.872 0.835
056-29C 0.935 1.016 0.942 1.000 0.023 0.039 0.788 0.626 0.862 0.791
057-29D 0.935 0.883 0.942 0.888 0.012 0.025 0.897 0.761 0.919 0.822
058-29E 0.870 0.664 0.873 0.658 0.006 -0.002 0.957 1.000 0.914 0.811
059-29F 0.917 0.919 0.924 0.925 0.008 0.013 0.936 0.886 0.930 0.905
061-30B 0.952 0.938 0.960 0.946 0.007 0.021 0.953 0.804 0.957 0.872
062-30C 0.813 0.824 0.814 0.826 0.007 0.024 0.948 0.776 0.879 0.800
063-30D 0.746 0.744 0.744 0.742 0.002 0.002 1.000 0.996 0.863 0.860
064-30E 0.524 0.637 0.510 0.629 0.002 -0.007 1.000 1.000 0.714 0.793
065-30F 0.855 0.784 0.858 0.783 0.004 -0.019 0.980 1.000 0.917 0.885
066-31A 0.794 0.808 0.794 0.809 0.004 0.006 0.976 0.962 0.880 0.882
067-31B 0.833 0.888 0.835 0.893 0.042 0.044 0.595 0.576 0.705 0.717
068-31C 0.926 0.898 0.933 0.904 0.053 0.042 0.483 0.595 0.671 0.733
070-31E 0.794 0.674 0.794 0.668 0.048 0.013 0.534 0.885 0.651 0.769
071-31F 0.813 0.771 0.814 0.770 0.010 0.023 0.919 0.790 0.865 0.780
073-32B 0.885 0.951 0.890 0.959 0.019 0.035 0.831 0.660 0.860 0.796
074-32C 0.935 0.869 0.942 0.873 0.040 0.044 0.612 0.576 0.759 0.709
075-32D 0.813 0.834 0.814 0.836 0.014 0.020 0.875 0.815 0.844 0.826
077-32F 0.714 0.787 0.710 0.787 0.010 0.010 0.919 0.914 0.808 0.848
078-33B 0.813 0.739 0.814 0.736 0.011 0.010 0.907 0.914 0.859 0.820
079-34B 0.658 0.628 0.651 0.620 0.010 0.023 0.918 0.789 0.773 0.699
080-35B 0.741 0.799 0.738 0.799 0.003 -0.002 0.985 1.000 0.853 0.894
081-36B 0.556 0.525 0.544 0.511 0.005 0.002 0.967 1.000 0.725 0.715
082-37B 0.488 0.562 0.472 0.550 0.008 0.014 0.943 0.879 0.667 0.695
083-38A 0.794 0.826 0.794 0.827 0.026 0.013 0.759 0.889 0.776 0.857
084-38B 0.685 0.723 0.680 0.720 0.004 0.012 0.980 0.896 0.816 0.803
085-39A 0.500 0.376 0.485 0.355 0.009 0.002 0.928 1.000 0.671 0.596
086-39B 0.326 0.296 0.302 0.271 0.053 0.054 0.483 0.472 0.382 0.358
088-41A 0.926 0.934 0.933 0.941 0.022 0.039 0.799 0.619 0.863 0.763
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ordering corresponds to the order generated by the ranking
algorithm R (OR).
4. Normalize (through eq 6) the values (labels) assigned to
each case in steps 1-3 where Li ) Ti ) 1 and Ui ) the
number of cases included in the library (n). In this way, we
obtained the respective normalized order values for the true
(OTdi) and worst (OWdi) order lists, as well as the order
generated by the ranking algorithm R (ORdi).
5. Use the respective normalized order values to determine
the difference between OR and OT (OT-ORδi)

OT-ORδi ) |OTdi -
ORdi| (13)

and between OW and OT (OT-OWδi)

OT-OWδi ) |OTdi -
OWdi| (14)

The ideal difference is 0 for all the cases and corresponds
to a perfect ranking. Figure 2 illustrates both worst and
perfect rankings, respectively.
6. Estimate the quality of the order generated by the
ranking algorithm R (OR) by means of the ranking quality
index (Ψ), which can be defined as the absolute value of
the mean of OT-ORδi, for the n cases included in the library
to be ranked

Ψ)
|∑i)1

n
OT-ORδi

n
|

(15)

Ψ is in the range [0, 0.5], being Ψ ) 0 if a ranking is perfect
and Ψ = 0.5 for the worst ranking. The closer Ψ is to 0 for
a certain ranking, the higher the quality of this ranking. In
contrast, values of Ψ near 0.5 indicate a low ranking quality.
Because the value of Ψ associated with the worst ranking is
dependent on the size of the library to be ranked, this value
is not exactly, but is approximately, equal to 0.5. At the same
time, a range [0, 1] rather than [0, 0.5] is a more clear
indicator of the quality of a ranking. Considering both of

the previous questions, a correction factor (F) is applied to
Ψ

F) 2

ΨOW
(16)

where ΨOW is the quality index for the worst ranking. F is
used here to obtain a more representative indicator Ψ of the
quality of a ranking and at the same time to include Ψ in
the range [0, 1], where ΨOW is exactly equal to 1. In this
way, we obtain the corrected ranking quality index (Ψ*)

Ψ* )
|∑i)1

n
OT-ORδi

n
|
·F)

|∑i)1

n
OT-ORδi

n
|
· 2

ΨWR
(17)

Finally, it is possible to express Ψ* as the percentage of
ranking quality (R%)

R% ) (1-Ψ * ) · 100 (18)

3. Results and Discussion

3.1. MOOP-DESIRE(PHARM-TOX)-Based Optimization.
To test the utility of the MOOP-DESIRE methodology for
the simultaneous optimization of multiple properties, it was
applied to a library of 95 fluoroquinolones reported by Suto
et al. with the aim of simultaneously optimizing their
antibacterial activity over gram-negative microorganisms
(MIC) and their cytotoxic effects over mammalian cells
(IC50).

Following the strategy outlined previously, we began by
seeking the best linear models relating each property to the
DRAGON molecular descriptors. One should emphasize here
that the reliability of the final results of the optimization
process strongly depends on the quality of the initial set of
PMs.

One MLR-based PM containing 10 variables previously
selected by GA was developed for both properties. The

Table 5. Continued

compound ID 1/1 + MIC
predicted

1/1 + MIC d(MIC)
predicted
d(MIC) 1/1 + IC50

predicted
1/1 + IC50 d(IC50)

predicted
d(IC50) DMIC-IC50

predicted
DMIC-IC50

090-42A 0.685 0.634 0.680 0.626 0.005 0.017 0.974 0.849 0.814 0.729
092-48 0.685 0.673 0.680 0.667 0.014 0.013 0.875 0.890 0.771 0.770
093-49 0.654 0.844 0.647 0.847 0.004 0.001 0.981 1.000 0.797 0.920
094-50 0.833 0.873 0.835 0.877 0.031 0.034 0.702 0.678 0.766 0.771
095-51 0.962 0.936 0.970 0.943 0.018 0.010 0.835 0.914 0.900 0.929
096-52 0.917 0.910 0.924 0.916 0.067 0.053 0.340 0.482 0.561 0.664
098-54 0.962 0.913 0.970 0.920 0.014 0.002 0.881 0.995 0.924 0.957
100-56 0.926 0.807 0.933 0.808 0.010 0.003 0.919 0.991 0.926 0.895
101-57 0.038 0.294 0.000 0.269 0.005 0.004 0.967 0.982 0.022 0.514
102-58 0.990 0.926 1.000 0.933 0.063 0.043 0.383 0.584 0.619 0.738
103-59 0.926 0.960 0.933 0.968 0.017 0.029 0.850 0.725 0.891 0.838
104-60 0.901 0.917 0.906 0.923 0.010 0.016 0.919 0.858 0.913 0.890
105-61 0.524 0.498 0.510 0.483 0.003 0.017 0.985 0.850 0.709 0.641
106-62 0.980 0.877 0.990 0.881 0.083 0.078 0.170 0.226 0.410 0.446
107-63 0.971 0.973 0.980 0.982 0.023 0.030 0.788 0.718 0.879 0.840
110-70 0.488 0.460 0.472 0.443 0.015 0.010 0.870 0.916 0.641 0.637
111-71 0.524 0.593 0.510 0.583 0.003 0.015 0.985 0.869 0.709 0.712
112-72 0.741 0.619 0.738 0.610 0.016 0.009 0.856 0.929 0.795 0.753
113-73 0.625 0.570 0.617 0.559 0.023 0.025 0.783 0.769 0.695 0.655
114-74 0.641 0.661 0.633 0.655 0.021 0.015 0.803 0.868 0.713 0.754
115-75 0.592 0.619 0.582 0.611 0.019 0.027 0.831 0.745 0.695 0.675
117-77 0.781 0.820 0.781 0.821 0.100 0.082 0.000 0.188 0.000 0.393
118-78 0.625 0.623 0.617 0.615 0.004 0.004 0.983 0.977 0.778 0.775

RD(MIC-IC50)
2 ) 0.702 Adj.RD(MIC-IC50)

2 ) 0.698
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Table 6. Predicted Values of the Optimized Properties and Their Respective Individual and Overall Desirability Values Obtained after
the LOO-CV Experiment for the Compounds Used on the Desirability-Based MOOP Process

compound ID
LOO-CV predicted

1/1 + MIC
LOO-CV predicted

d(MIC)
LOO-CV predicted

1/1 + IC50

LOO-CV predicted
d(IC50)

LOO-CV predicted
DMIC-IC50

004-4-ciprofloxacin 0.908 0.914 -0.011 1.000 0.956
006-6-tosufloxacin 0.935 0.943 -0.008 1.000 0.971
007-7-PD117558 0.683 0.678 0.051 0.505 0.585
008-8 0.600 0.590 0.018 0.837 0.703
010-10 0.261 0.234 0.022 0.793 0.431
012-13 0.578 0.568 -0.002 1.000 0.753
014-15 0.568 0.557 -0.014 1.000 0.746
015-16 0.772 0.771 0.022 0.800 0.786
016-17 0.651 0.644 0.008 0.942 0.779
018-19 0.891 0.896 0.003 0.994 0.944
019-20 0.952 0.960 0.006 0.959 0.960
020-21 0.887 0.892 0.031 0.702 0.791
021-22 0.877 0.882 0.009 0.925 0.903
022-23A 0.800 0.801 0.021 0.809 0.805
023-23B 0.780 0.779 0.027 0.747 0.763
024-23C 0.939 0.947 0.016 0.857 0.901
025-23D 0.781 0.780 0.029 0.726 0.753
026-23E 0.363 0.342 -0.008 1.000 0.585
027-23F 0.920 0.927 0.021 0.803 0.863
028-24A 0.977 0.987 0.014 0.882 0.933
029-24C 0.858 0.861 0.011 0.909 0.884
030-24D 0.891 0.896 0.015 0.870 0.883
031-24E 0.674 0.668 0.000 1.000 0.817
032-24F 0.942 0.949 0.018 0.841 0.893
033-25A 0.827 0.829 0.027 0.742 0.784
034-25B 1.024 1.000 0.074 0.265 0.515
036-25D 0.878 0.882 0.040 0.616 0.737
037-25E 0.616 0.607 0.021 0.806 0.699
038-25F 0.846 0.849 0.042 0.588 0.706
040-26D 0.740 0.737 0.026 0.750 0.743
041-26E 0.596 0.587 0.004 0.975 0.756
042-26F 0.792 0.792 0.020 0.817 0.804
043-27A 0.782 0.782 0.035 0.668 0.722
044-27B 0.840 0.842 0.112 0.000 0.000
045-27C 0.996 1.000 0.084 0.162 0.402
046-27D 0.861 0.865 0.057 0.434 0.613
047-27E 0.606 0.596 0.028 0.733 0.661
048-27F 0.716 0.712 0.035 0.662 0.686
049-28A 0.685 0.679 0.021 0.808 0.741
050-28B 0.823 0.825 0.080 0.205 0.412
051-28C 0.643 0.636 0.067 0.334 0.461
052-28D 0.735 0.733 0.035 0.665 0.698
054-28F 0.708 0.703 0.012 0.899 0.795
055-29B 1.013 1.000 0.032 0.692 0.832
056-29C 1.023 1.000 0.040 0.616 0.785
057-29D 0.877 0.881 0.026 0.755 0.816
058-29E 0.630 0.622 -0.004 1.000 0.789
059-29F 0.919 0.925 0.013 0.883 0.904
061-30B 0.936 0.943 0.022 0.794 0.865
062-30C 0.826 0.827 0.026 0.760 0.793
063-30D 0.744 0.741 0.002 0.996 0.859
064-30E 0.655 0.648 -0.008 1.000 0.805
065-30F 0.775 0.775 -0.021 1.000 0.880
066-31A 0.810 0.811 0.006 0.960 0.882
067-31B 0.891 0.896 0.044 0.574 0.717
068-31C 0.895 0.900 0.040 0.607 0.739
070-31E 0.663 0.656 0.009 0.929 0.781
071-31F 0.767 0.766 0.024 0.779 0.772
073-32B 0.957 0.965 0.036 0.654 0.794
074-32C 0.857 0.861 0.044 0.573 0.702
075-32D 0.836 0.839 0.021 0.810 0.824
077-32F 0.793 0.793 0.010 0.914 0.851
078-33B 0.723 0.720 0.010 0.915 0.812
079-34B 0.607 0.598 0.030 0.715 0.654
080-35B 0.815 0.816 -0.002 1.000 0.904
081-36B 0.520 0.506 0.001 1.000 0.711
082-37B 0.577 0.566 0.015 0.867 0.701
083-38A 0.827 0.829 0.011 0.904 0.865
084-38B 0.730 0.726 0.014 0.877 0.798
085-39A 0.362 0.340 0.000 1.000 0.583
086-39B 0.280 0.254 0.054 0.466 0.344
088-41A 0.935 0.942 0.041 0.606 0.755
090-42A 0.630 0.622 0.018 0.839 0.723
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resulting best-fit models are given in Table 4, together
with the statistical regression parameters. The computed
DRAGON molecular descriptors (GA selected and in-

cluded on the respective MLR models) for the 95 training
compounds are shown in the Supporting Information (see
Table SI2).

Table 6. Contiuned

compound ID
LOO-CV predicted

1/1 + MIC
LOO-CV predicted

d(MIC)
LOO-CV predicted

1/1 + IC50

LOO-CV predicted
d(IC50)

LOO-CV predicted
DMIC-IC50

092-48 0.669 0.662 0.013 0.891 0.768
093-49 0.861 0.865 0.001 1.000 0.930
094-50 0.894 0.899 0.034 0.673 0.778
095-51 0.933 0.940 0.010 0.918 0.929
096-52 0.909 0.915 0.051 0.497 0.674
098-54 0.911 0.917 0.002 1.000 0.957
100-56 0.799 0.799 0.001 1.000 0.894
101-57 0.349 0.327 0.003 0.986 0.568
102-58 0.922 0.928 0.041 0.602 0.748
103-59 0.964 0.973 0.030 0.713 0.833
104-60 0.920 0.927 0.017 0.848 0.886
105-61 0.492 0.477 0.019 0.830 0.629
106-62 0.865 0.868 0.077 0.232 0.449
107-63 0.973 0.983 0.031 0.707 0.833
110-70 0.447 0.430 0.010 0.922 0.629
111-71 0.601 0.591 0.016 0.861 0.713
112-72 0.606 0.597 0.008 0.936 0.747
113-73 0.566 0.555 0.025 0.767 0.653
114-74 0.664 0.657 0.014 0.881 0.761
115-75 0.622 0.613 0.029 0.724 0.666
117-77 0.824 0.826 0.077 0.235 0.440
118-78 0.621 0.613 0.005 0.972 0.772

QD(MIC-IC50)
2 ) 0.629

Table 7. Results of the Desirability-Based MOOP Process

predictors optimum level

JGI6 ) 0.058539124 R4e+ )0.215402953 RDF020e ) 6.533512527
MATS3e ) 0.097921819 R5p ) 0.560622 RDF050e ) 21.75996
GATS5p ) 2.71639566 G(F · · · F) ) -5.395274574 Mor05m ) -6.618889553
FDI ) 0.996478400 H4m ) 0.836178947 Mor14v ) -0.049636561
Mor24v ) 0.095266 D/Dr06 ) 202.3135 HATS3m ) 0.049289
H6v ) 0.266748712 BELp1 ) 2.022804936 HATS3e ) 0.242572857

Table 8. Optimal Set of Weights

variable wi relative importance (%) variable wi relative importance (%)

JGI6 23.323 17.561 H4m 1.573 6.019
MATS3e -1.259 4.517 D/Dr06 -0.001 5.184
GATS5p 1.190 5.817 BELp1 11.365 11.215
FDI -9.772 0.000 RDF020e 0.026 5.199
Mor24v 3.710 7.153 RDF050e -0.019 5.175
H6v 4.903 7.787 Mor05m 0.013 5.192
R4e+ -1.053 4.626 Mor14v 0.560 5.482
R5p -6.980 1.481 HATS3m -9.248 0.278
G(F..F) 0.052 5.213 HATS3e -5.811 2.101

Figure 3. ∆i-Based ranking of the fluoroquinolone library.
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As can be noticed, the models are good in both statistical
significance and predictive ability (see Table 4). Good overall
quality of the models is revealed by the large F and small p
values, satisfactory F values (F ) 5), and R2 and Adj.R2

(goodness of fit) values ranging from 0.75 to 0.779 and 0.721
to 0.753, respectively; as well as QLOO

2 (predictivity) values
between 0.686 and 0.725.

The next step is to find out if the basic assumptions of
MLR analysis are fulfilled. No violations of such assumptions
were found that could compromise the reliability of the
resulting predictions. A deeper discussion about the
fulfilling of the parametric assumptions for the MLR
models is included in the Supporting Information (check
Table SI4).

Table 9. ∆i, D∆i, and Di Values of the Library of Compounds Used for Ranking

compound ID ∆i
D∆i predicted DMIC-IC50 compound ID ∆i

D∆i predicted DMIC-IC50

004-4-ciprofloxacin 0.305 0.993 0.956 064-30E 1.221 0.766 0.793
006-6-tosufloxacin 0.330 0.987 0.968 065-30F 0.718 0.891 0.885
010-10 2.764 0.382 0.452 066-31A 0.359 0.980 0.882
014-15 0.801 0.870 0.751 067-31B 1.241 0.761 0.717
015-16 0.927 0.839 0.788 068-31C 0.871 0.853 0.733
016-17 1.416 0.717 0.776 070-31E 0.947 0.834 0.769
018-19 0.463 0.954 0.943 071-31F 0.765 0.879 0.780
019-20 0.510 0.943 0.959 073-32B 1.130 0.788 0.796
020-21 1.274 0.753 0.793 074-32C 1.123 0.790 0.709
021-22 0.919 0.841 0.901 075-32D 0.970 0.828 0.826
022-23A 0.528 0.938 0.806 077-32F 0.708 0.893 0.848
023-23B 1.132 0.788 0.777 078-33B 1.205 0.770 0.820
024-23C 0.411 0.967 0.904 079-34B 2.903 0.348 0.699
025-23D 1.040 0.811 0.761 080-35B 0.988 0.824 0.894
027-23F 0.680 0.900 0.856 081-36B 1.729 0.640 0.715
028-24A 0.730 0.888 0.930 082-37B 1.703 0.646 0.695
029-24C 0.576 0.926 0.879 083-38A 1.046 0.809 0.857
030-24D 0.829 0.863 0.882 084-38B 1.589 0.674 0.803
031-24E 1.060 0.806 0.823 085-39A 2.044 0.561 0.596
032-24F 0.701 0.895 0.896 086-39B 4.303 0.000 0.358
033-25A 1.004 0.820 0.790 088-41A 1.117 0.792 0.763
034-25B 1.713 0.644 0.508 090-42A 1.214 0.768 0.729
037-25E 1.425 0.715 0.699 092-48 0.745 0.884 0.770
038-25F 0.859 0.856 0.713 093-49 0.486 0.949 0.920
040-26D 1.658 0.657 0.737 094-50 1.120 0.791 0.771
041-26E 1.904 0.596 0.756 095-51 0.672 0.902 0.929
042-26F 0.631 0.912 0.811 096-52 1.279 0.751 0.664
043-27A 1.723 0.641 0.707 098-54 0.444 0.959 0.957
044-27B 2.595 0.424 0.000 100-56 0.746 0.884 0.895
046-27D 1.405 0.720 0.647 102-58 1.183 0.775 0.738
047-27E 1.572 0.679 0.667 103-59 0.656 0.906 0.838
048-27F 1.359 0.731 0.685 104-60 0.680 0.900 0.890
049-28A 1.912 0.594 0.753 105-61 0.825 0.864 0.641
052-28D 1.509 0.694 0.707 106-62 2.219 0.518 0.446
054-28F 1.784 0.626 0.789 107-63 1.159 0.781 0.840
055-29B 1.132 0.788 0.835 110-70 1.630 0.664 0.637
056-29C 1.012 0.818 0.791 111-71 1.050 0.808 0.712
057-29D 1.061 0.806 0.822 112-72 1.142 0.785 0.753
058-29E 0.279 1.000 0.811 113-73 1.205 0.770 0.655
059-29F 0.711 0.893 0.905 114-74 1.631 0.664 0.754
061-30B 1.191 0.773 0.872 115-75 1.495 0.698 0.675
062-30C 1.278 0.752 0.800 118-78 0.739 0.886 0.775
063-30D 0.945 0.834 0.860

Figure 4. Ranking attained for the 10% of the library of compounds.
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Another aspect to consider in PMs development is to
establish their applicability domain. The leverage values
(h) and standardized residuals (Std. Res.) related to three
PMs for the 95 training compounds are shown in Table
SI3 (Supporting Information), whereas Figure SI1 (Sup-
porting Information) shows the corresponding leverage
plots. From these plots, the applicability domain is
established inside a squared area within ( 2 standard

deviations and a leverage threshold h* of 0.347. (Notice
that each model was fitted using 95 training compounds
and included 11 adjustable parameters: 10 DRAGON
descriptors plus the intercept.)

So far, we have demonstrated the satisfactory accuracy
and the acceptable predictive ability of the developed PMs.
We may now thus proceed with an adequate level of

Figure 5. MOOP-DESIRE-based rational drug discovery and development.
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Table 10. Residual Analysis of the Original and Desirability-Transformed Responses Employed for the MLR Modeling, MOOP, and
Estimation of Weights Used for Ranking Based on a Nonlinear Curve-Fitting Algorithm

residuals

MLR modeling MOOP ranking

FIT LOO-CV FIT LOO-CV

compound ID 1/1 + MIC 1/1 + IC50 1/1 + MIC 1/1 + IC50 dMIC dIC50 DMIC-IC50 dMIC dIC50 DMIC-IC50 (D - D∆i)

004-4 0.001 0.013 0.001 0.014 0.001 -0.006 -0.002 0.001 -0.006 -0.002 -0.037
006-6 -0.014 0.014 -0.018 0.016 -0.014 -0.059 -0.036 -0.019 -0.059 -0.039 -0.019
007-7 0.224 0.031 0.234 0.032 0.236 -0.319 -0.184 0.246 -0.335 -0.189
008-8 0.226 -0.011 0.233 -0.012 0.237 0.109 0.182 0.245 0.120 0.191
010-10 0.074 -0.004 0.094 -0.005 0.078 0.046 0.079 0.099 0.054 0.100 0.07
012-13 -0.362 0.006 -0.385 0.006 -0.380 -0.022 -0.337 -0.405 -0.022 -0.353
014-15 0.065 0.014 0.073 0.017 0.068 -0.012 0.040 0.076 -0.012 0.045 -0.119
015-16 -0.079 -0.014 -0.087 -0.016 -0.083 0.143 0.018 -0.091 0.157 0.020 -0.051
016-17 -0.088 -0.002 -0.095 -0.003 -0.092 0.022 -0.051 -0.100 0.025 -0.054 0.059
018-19 0.002 0.000 0.002 0.000 0.002 -0.006 -0.002 0.002 -0.007 -0.003 -0.011
019-20 -0.062 -0.003 -0.067 -0.003 -0.065 0.026 -0.022 -0.070 0.029 -0.023 0.016
020-21 0.071 0.001 0.075 0.001 0.074 -0.010 0.026 0.078 -0.011 0.028 0.04
021-22 -0.103 -0.003 -0.108 -0.003 -0.108 0.031 -0.044 -0.114 0.032 -0.046 0.06
022-23A 0.026 0.005 0.033 0.005 0.027 -0.046 -0.010 0.034 -0.050 -0.009 -0.132
023-23B 0.114 -0.018 0.129 -0.019 0.119 0.177 0.148 0.136 0.189 0.162 -0.011
024-23C -0.027 -0.008 -0.030 -0.009 -0.029 0.088 0.030 -0.032 0.096 0.033 -0.063
025-23D -0.011 -0.020 -0.012 -0.022 -0.012 0.210 0.094 -0.012 0.227 0.102 -0.05
026-23E -0.230 0.011 -0.289 0.012 -0.241 -0.016 -0.336 -0.304 -0.016 -0.392
027-23F -0.111 -0.004 -0.126 -0.004 -0.117 0.042 -0.036 -0.133 0.044 -0.043 -0.044
028-24A -0.056 0.000 -0.060 0.000 -0.058 -0.001 -0.028 -0.063 -0.001 -0.031 0.042
029-24C 0.106 0.024 0.113 0.026 0.111 -0.247 -0.086 0.119 -0.267 -0.091 -0.047
030-24D 0.042 0.007 0.044 0.007 0.044 -0.067 -0.015 0.046 -0.071 -0.016 0.019
031-24E 0.150 0.002 0.159 0.003 0.158 -0.013 0.085 0.167 -0.013 0.091 0.017
032-24F 0.027 -0.007 0.029 -0.008 0.029 0.073 0.052 0.031 0.076 0.055 0.001
033-25A 0.006 -0.014 0.006 -0.015 0.006 0.143 0.075 0.006 0.154 0.081 -0.03
034-25B -0.064 0.008 -0.072 0.009 -0.040 -0.088 -0.104 -0.040 -0.095 -0.111 -0.136
036-25D 0.022 0.046 0.023 0.051 0.022 -0.465 -0.412 0.024 -0.523 -0.447
037-25E 0.040 0.005 0.042 0.005 0.042 -0.043 0.004 0.044 -0.047 0.004 -0.016
038-25F 0.029 -0.022 0.031 -0.023 0.031 0.226 0.139 0.033 0.236 0.146 -0.143
040-26D 0.049 0.015 0.054 0.017 0.051 -0.154 -0.060 0.057 -0.173 -0.066 0.08
041-26E 0.025 0.003 0.029 0.004 0.027 -0.033 0.004 0.030 -0.039 0.004 0.16
042-26F 0.031 -0.013 0.034 -0.014 0.032 0.129 0.079 0.036 0.140 0.086 -0.101
043-27A -0.115 0.005 -0.124 0.007 -0.121 -0.052 -0.084 -0.131 -0.073 -0.099 0.066
044-27B 0.042 -0.001 0.045 -0.001 0.045 0.000 0.000 0.048 0.000 0.000 -0.424
045-27C -0.054 0.023 -0.061 0.027 -0.057 -0.122 -0.349 -0.058 -0.162 -0.402
046-27D -0.061 -0.026 -0.067 -0.031 -0.064 0.272 0.129 -0.071 0.325 0.163 -0.073
047-27E -0.098 -0.017 -0.106 -0.019 -0.103 0.172 0.004 -0.111 0.195 0.010 -0.012
048-27F 0.024 0.002 0.025 0.003 0.024 -0.030 -0.004 0.026 -0.034 -0.005 -0.046
049-28A 0.027 -0.013 0.029 -0.016 0.029 0.139 0.077 0.031 0.163 0.089 0.159
050-28B -0.010 0.026 -0.010 0.031 -0.010 -0.156 -0.359 -0.011 -0.205 -0.412
051-28C 0.135 -0.022 0.151 -0.025 0.142 0.228 0.198 0.158 0.261 0.226
052-28D -0.071 -0.024 -0.077 -0.027 -0.075 0.247 0.074 -0.082 0.271 0.083 0.013
054-28F -0.077 0.004 -0.083 0.005 -0.081 -0.044 -0.066 -0.086 -0.052 -0.072 0.163
055-29B -0.074 -0.011 -0.078 -0.011 -0.058 0.110 0.037 -0.058 0.116 0.040 0.047
056-29C -0.081 -0.016 -0.088 -0.017 -0.058 0.162 0.071 -0.058 0.172 0.077 -0.027
057-29D 0.052 -0.013 0.058 -0.014 0.054 0.136 0.097 0.061 0.142 0.103 0.016
058-29E 0.206 0.008 0.240 0.010 0.215 -0.043 0.103 0.251 -0.043 0.125 -0.189
059-29F -0.002 -0.005 -0.002 -0.005 -0.001 0.050 0.025 -0.001 0.053 0.026 0.012
061-30B 0.014 -0.014 0.016 -0.015 0.014 0.149 0.085 0.017 0.159 0.092 0.099
062-30C -0.011 -0.017 -0.013 -0.019 -0.012 0.172 0.079 -0.013 0.188 0.086 0.048
063-30D 0.002 0.000 0.002 0.000 0.002 0.004 0.003 0.003 0.004 0.004 0.026
064-30E -0.113 0.009 -0.131 0.010 -0.119 0.000 -0.079 -0.138 0.000 -0.091 0.027
065-30F 0.071 0.023 0.080 0.025 0.075 -0.020 0.032 0.083 -0.020 0.037 -0.006
066-31A -0.014 -0.002 -0.016 -0.002 -0.015 0.014 -0.002 -0.017 0.016 -0.002 -0.098
067-31B -0.055 -0.002 -0.058 -0.002 -0.058 0.019 -0.012 -0.061 0.021 -0.012 -0.044
068-31C 0.028 0.011 0.031 0.013 0.029 -0.112 -0.062 0.033 -0.124 -0.068 -0.12
070-31E 0.120 0.035 0.131 0.039 0.126 -0.351 -0.118 0.138 -0.395 -0.130 -0.065
071-31F 0.042 -0.013 0.046 -0.014 0.044 0.129 0.085 0.048 0.140 0.093 -0.099
073-32B -0.066 -0.016 -0.072 -0.017 -0.069 0.171 0.064 -0.075 0.177 0.066 0.008
074-32C 0.066 -0.004 0.078 -0.004 0.069 0.036 0.050 0.081 0.039 0.057 -0.081
075-32D -0.021 -0.006 -0.023 -0.007 -0.022 0.060 0.018 -0.025 0.065 0.020 -0.002
077-32F -0.073 0.000 -0.079 0.000 -0.077 0.005 -0.040 -0.083 0.005 -0.043 -0.045
078-33B 0.074 0.001 0.090 0.001 0.078 -0.007 0.039 0.094 -0.008 0.047 0.05
079-34B 0.030 -0.013 0.051 -0.020 0.031 0.129 0.074 0.053 0.203 0.119 0.351
080-35B -0.058 0.005 -0.074 0.005 -0.061 -0.015 -0.041 -0.078 -0.015 -0.051 0.07
081-36B 0.031 0.003 0.036 0.004 0.033 -0.033 0.010 0.038 -0.033 0.014 0.075
082-37B -0.074 -0.006 -0.089 -0.007 -0.078 0.064 -0.028 -0.094 0.076 -0.034 0.049
083-38A -0.032 0.013 -0.033 0.015 -0.033 -0.130 -0.081 -0.035 -0.145 -0.089 0.048
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confidence to the simultaneous optimization of the antibacte-
rial and cytotoxic properties for the set of compounds.

First, the predicted values for each property were used to
fit a model containing all the independent variables applied
in modeling the original properties. In so doing, one is able
to discriminate opposite objectives like efficacy (antibacterial
activity) and toxicity (cytotoxicity) with partial overlap of
the descriptors set used to built the PMs. (Notice that both
PMs share H4m and G(F · · · F); see Table 4.)

Once the models have been set up, the desirability
functions for each property (di) might be specified. To obtain
candidate(s) with high antibacterial potency (MIC ) 1/1 +
MIC) and low cytotoxicity (IC50 ) 1/1 + IC50), 1/1 + MIC
should be maximized (eq 5), and 1/1 + IC50 should be
minimized (eq 6). In addition, the individual di values for
the antibacterial and cytotoxicity properties were determined
by setting the Li, Ui, and Ti values, as described previously.
Then, the two di values were combined into the single overall
desirability D by means of eq 3.

The expected and predicted desirability values attribut-
able to each response plus the overall desirability for the
training set are depicted in Table 5. In addition, the LOO-
CV predicted values and the desirability values for each
response, along with the overall desirability values are
shown in Table 6. As can be seen, the overall desirability
function exhibits good statistical quality as indicated by
the RD

2 and Adj.RD
2 values (∼0.7). Moreover, a QD

2 value
of 0.63 provides an adequate level of reliability on the
method in predicting D.

Finally, the optimization of the overall desirability was
carried out to obtain the levels of the descriptors included
in the PMs that simultaneously produce the most desirable
combination of the properties. The results of the desirability-
based MOOP process are detailed in Table 7. Here are shown
the levels of the predictive variables required to reach a
highly desirable (DMIC-IC50 ) 1) fluoroquinolone-like can-
didate with the best possible compromise between antibacte-
rial and cytotoxicity properties.

3.2. MOOP-DESIRE(PHARM-TOX)-Based Ranking and
Filtering. Once found, the levels of the predictive variables
required to reach a highly desirable fluoroquinolone-like
candidate are used as a pattern to rank the library of
flouroquinolones. Previously, 10 compounds were removed
from the initial library because of their outlier nature to avoid
their negative influence in the ulterior data-fitting process.

Through a nonlinear curve-fitting process implemented in
MATLAB, we found the optimal set of weighs wi required
to minimize the differences between descriptions (∆i) and
solutions (Di) in the library of compounds to rank.

Next, ∆i is used as a ranking criterion to obtain an ordered
list of the flouroquinolones. The list start with the compound
most similar to the optimal fluoroquinolone-like candidate
previously determined by the process of simultaneous
optimization of antibacterial and cytotoxicity properties (see
the levels of the predictive variables found for the optimal
candidate in Table 7). The computed values of Di, ∆i, and
the normalized values of ∆i (D∆i) of the library of compounds
used for ranking are detailed in Table 9.

Table 10. Continued

residuals

MLR modeling MOOP ranking

FIT LOO-CV FIT LOO-CV

compound ID 1/1 + MIC 1/1 + IC50 1/1 + MIC 1/1 + IC50 dMIC dIC50 DMIC-IC50 dMIC dIC50 DMIC-IC50 (D - D∆i)

084-38B -0.038 -0.008 -0.045 -0.010 -0.040 0.084 0.013 -0.046 0.103 0.018 0.129
085-39A 0.124 0.007 0.138 0.009 0.130 -0.072 0.075 0.145 -0.072 0.088 0.035
086-39B 0.030 -0.001 0.046 -0.001 0.031 0.011 0.024 0.048 0.017 0.038 0.358
088-41A -0.008 -0.017 -0.009 -0.019 -0.008 0.180 0.100 -0.009 0.193 0.108 -0.029
090-42A 0.051 -0.012 0.055 -0.013 0.054 0.125 0.085 0.058 0.135 0.091 -0.039
092-48 0.012 0.001 0.016 0.001 0.013 -0.015 0.001 0.018 -0.016 0.003 -0.114
093-49 -0.190 0.003 -0.207 0.003 -0.200 -0.019 -0.123 -0.218 -0.019 -0.133 -0.029
094-50 -0.040 -0.003 -0.061 -0.003 -0.042 0.024 -0.005 -0.064 0.029 -0.012 -0.02
095-51 0.026 0.008 0.029 0.008 0.027 -0.079 -0.029 0.030 -0.083 -0.029 0.027
096-52 0.007 0.014 0.008 0.016 0.008 -0.142 -0.103 0.009 -0.157 -0.113 -0.087
098-54 0.049 0.012 0.051 0.012 0.050 -0.114 -0.033 0.053 -0.119 -0.033 -0.002
100-56 0.119 0.007 0.127 0.009 0.125 -0.072 0.031 0.134 -0.081 0.032 0.011
101-57 -0.256 0.001 -0.311 0.002 -0.269 -0.015 -0.492 -0.327 -0.019 -0.546
102-58 0.064 0.020 0.068 0.022 0.067 -0.201 -0.119 0.072 -0.219 -0.129 -0.037
103-59 -0.034 -0.012 -0.038 -0.013 -0.035 0.125 0.053 -0.040 0.137 0.058 -0.068
104-60 -0.016 -0.006 -0.019 -0.007 -0.017 0.061 0.023 -0.021 0.071 0.027 -0.01
105-61 0.026 -0.014 0.032 -0.016 0.027 0.135 0.068 0.033 0.155 0.080 -0.223
106-62 0.103 0.005 0.115 0.006 0.109 -0.056 -0.036 0.122 -0.062 -0.039 -0.072
107-63 -0.002 -0.007 -0.002 -0.008 -0.002 0.070 0.039 -0.003 0.081 0.046 0.059
110-70 0.028 0.005 0.041 0.005 0.029 -0.046 0.004 0.042 -0.052 0.012 -0.027
111-71 -0.069 -0.012 -0.077 -0.013 -0.073 0.116 -0.003 -0.081 0.124 -0.004 -0.096
112-72 0.122 0.007 0.135 0.008 0.128 -0.073 0.042 0.141 -0.080 0.048 -0.032
113-73 0.055 -0.002 0.059 -0.002 0.058 0.014 0.040 0.062 0.016 0.042 -0.115
114-74 -0.020 0.006 -0.023 0.007 -0.022 -0.065 -0.041 -0.024 -0.078 -0.048 0.09
115-75 -0.027 -0.008 -0.030 -0.010 -0.029 0.086 0.020 -0.031 0.107 0.029 -0.023
117-77 -0.039 0.018 -0.043 0.023 -0.040 -0.188 -0.393 -0.045 -0.235 -0.440
118-78 0.002 0.000 0.004 -0.001 0.002 0.006 0.003 0.004 0.011 0.006 -0.111

residual mean 0.00006 0.00001 -0.0003 0.00006 0.00080 0.01150 -0.01513 0.00070 0.01260 -0.01579 -0.00921
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On the basis of ∆i, it is possible to reach a ranking of the
flouroquinolones library with a corrected ranking quality
index (Ψ*) of 0.313, representing a percentage of ranking
quality (R%) of 68.7. This ranking compared with the perfect
ranking is shown in Figure 3.

As can be noted, the quality of the ranking attained (R%

) 68.7) is similar to the predictability values exhibited in
the PMs as well as in the MOOP process (QMIC

2 ) 0.693,
QIC50

2 ) 0.686, Q2
DMIC-IC50 ) 0.629). This fact indicates that

the quality of both process (desirability-based MOOP and
ranking) are strongly dependent on the quality of the initial
set of PMs. In addition, the similarity exhibited between these
values suggests that the ranking algorithm reflects the quality
of the PMs and the MOOP process on which it is based.
The correspondence between the correlation results (low and
similar residuals for each case) of the nonlinear curve-fitting
process and the MLR modeling and the MOOP process
support this choice. This can be verified in Table 10 (see
also Tables 5, 6, and 9).

On the other hand, the main goal of ranking a library of
compounds according to a pharmaceutically optimal candi-
date is to filter the fragment containing the most promising
candidates (the closest and consequently more similar to the
optimal candidate) to propose these for synthesis and
biological assessment. Thus, if the best 10% (the best 9
candidates) of the library of flouroquinolones is proposed to
be included on the drug development process, the probability
of finding a promising candidate is increased. This fraction
exhibits a percentage of quality ranking of 82.74 (Ψ* )
0.173). The ranking of this fragment is shown in Figure 4.

Filtering the most promising candidates having the best
compromise between pharmacological, toxicological, and
pharmacokinetic properties confers to the process of discov-
ery and development of new drugs an elevated degree of
rationality which is not possible to reach via traditional
QSAR which optimize sequentially each pharmaceutical
property. The sequential optimization of the properties
involved in the final pharmaceutical profile of a drug implies
to overlook the rest of the properties equally determining
on the success of the candidate as a drug or at least to leave
to the serendipity to found a candidate with acceptable
profiles of these properties simultaneously. That is, a potent
candidate once identified via QSAR has a high probability
of being discarded later as a drug because of unacceptable
toxicological or pharmacokinetic profiles with the useless
expenses of time and resources in synthesis and pharmaco-
logical assays.69 Equally improvable is the choice of using
a jury of models (pharmacological (QSAR), toxicological
(QSTR) and pharmacokinetics (QPkR) prediction models)
since that is not very probable to find a candidate with all
the properties simultaneously optimized (in this way each
property is optimized separately), and if this happens, the
results is more by chance than the fruit of a rational drug
development strategy.

As have been illustrated above, the MOOP-DESIRE
methodology can be used as rational strategy of filtering new
drug candidates from combinatorial libraries, always con-
sidering those candidates included on the applicability
domain of the PMs on which are based the process of MOOP

and ranking. In situations like this, where the main goal is
the ranking and filtering, it is advisable to use descriptors
leading to highly predictive structure-desirability relation-
ships rather than interpretable descriptors to ensure the
accuracy of the predictions and therefore, an accurate
assessment of the molecule’s overall desirability. This type
of analysis is more appropriate for early stages of the drug
development process. In contrast, the use of small and
homogeneous data sets is more suitable for later stages of
the drug development process, once a lead has been
identified, rather than for early stages. Actually, specific
structural modifications can be made over the lead according
to the results of the optimization process. For this, the use
of clearly defined structural or physicochemical descriptors
can led to interpretable structure-desirability relationships
which can be used to design new candidates with an
improved pharmaceutical profile (see ref33). Figure 5
schematically summarizes the use of the MOOP-DESIRE
methodology to aid the rational discovery and development
of new drugs.
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Brasil, 2000.

(53) Barbosa de Oliveira, D.; Gaudio, A. C. QSAR 2000, 19, 599–
601.

(54) Statsoft_Inc. STATISTICA, 6.0 for Windows, 2001.
(55) Eriksson, L.; Jaworska, J.; Worth, A. P.; Cronin, M. T.;

McDowell, R. M.; Gramatica, P. EnViron. Health Perspect.
2003, 111 (10), 1361–75.

(56) Stewart, J.; Gill, L., Econometrics, 2nd ed.; Prentice Hall:
London, 1998.

(57) Kutner, M. H.; Nachtsheim, C. J.; Neter, J.; Li, W. Multicol-
linearity and its effects. In Applied Linear Statistical Models,
5th ed.; McGraw Hill: New York, 2005; pp 27889.

(58) Atkinson, A. C., Plots, Transformations and Regression;
Clarendon Press: Oxford, U.K., 1985.

(59) De Boor, C. A Practical Guide to Splines; Springer-Verlag:
New York, 1978.

(60) Gerald, C. F.; Wheatley, P. O., Applied Numerical Analysis,
4th ed.; Addison Wesley: Reading, MA, 1989.

(61) Kutner, M. H.; Nachtsheim, C. J.; Neter, J.; Li, W., Applied
Linear Statistical Models; 5th ed.; McGraw Hill: New York,
2005.

(62) Nelder, J. A.; Mead, R. Comput. J. 1965, 7, 308–13.
(63) Fletcher, R.; Reeves, C. M. Comput. J. 1964, 7, 149–54.
(64) Hooke, R.; Jeeves, T. A. J. Assoc. Comput. Machine 1961, 8,

212–29.
(65) Watson, I.; Marir, F. Case-Based Reasoning: A Review. The

Knowledge Engineering ReView; Cambridge University Press:
Cambridge, U.K., 1994, Vol. 9.

(66) Coleman, T. F.; Li, Y. SIAM J. Optim. 1996, 6, 418–45.
(67) Coleman, T. F.; Li, Y. Math Program 1994, 67 (2), 189–

224.
(68) MATLAB, 7.2; The MathWorks, Inc.: Natick, MA, 2006.
(69) Drews, J. Drug DiscoVery Today 1998, 3, 491–4.

CC800115Y

Desirability-Based Multiobjective Optimization and Ranking Journal of Combinatorial Chemistry, 2008 Vol. 10, No. 6 913


